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ABSTRACT The increasing use of smartphones, tablets, and other mobile devices poses a significant
challenge in providing effective online security. CAPTCHAs, tests for distinguishing human and computer
users, have traditionally been popular; however, they face particular difficulties in a modern mobile environ-
ment because most of them rely on keyboard input and have language dependencies. This paper proposes
a novel image-based CAPTCHA that combines the touch-based input methods favored by mobile devices
with genetically optimized face detection tests to provide a solution that is simple for humans to solve, ready
for worldwide use, and provides a high level of security by being resilient to automated computer attacks. In
extensive testing involving over 2600 users and 40 000 CAPTCHA tests, fgCAPTCHA demonstrates a very
high human success rate while ensuring a 0% attack rate using three well-known face detection algorithms.

INDEX TERMS Mobile security, web security, CAPTCHA, face detection.

I. INTRODUCTION
Due to recent developments in technology, users are rapidly
adopting smartphones, tablets, and other non-traditional
smart computing devices in lieu of desktop and laptop com-
puters. Traditional input devices such as keyboards and mice
are being replaced by more interactive touchscreen technol-
ogy. With advanced mobile devices, users can easily access
Internet services such as online shopping and e-banking.
These large-scale applications require improved interfaces
(including security systems) designed to easily serve the
growing mobile market [1].

Presently, a number of techniques provide device-level
security to protect users in case of loss or theft of their mobile
device. Solutions based on typing such as passwords and
PIN codes dominate, but newer mobile-friendly techniques
such as picture puzzles [2], tracing patterns [3], and bio-
metrics features including touch pattern analysis [4], finger-
prints [5], and facial images [6] are gaining popularity and
acceptance. While many online service providers have com-
pletely redesigned their website portals or maintain special
mobile versions of their websites, relatively little progress
has been made with similar redesigns of application-layer
security tools [7] to protect the online resources which mobile
users access.

FIGURE 1. Example of a fgCAPTCHA image with correct selections, the
human faces, circled.

CAPTCHA (Completely Automated Public Turing Test to
Tell Computers and Humans Apart) is one major example of a
security tool that is not yet mobile user-friendly. CAPTCHAs
are designed to prevent automated attacks by requiring users
to perform tasks that are relatively easy for humans but
challenging for computers (automated algorithms) [8]. They
have become ubiquitous in situations where websites want to
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prevent e-mail, instant messaging, and text message spam.
CAPTCHAs provide an additional layer of security and are
frequently paired with account login systems to prevent brute
force password attacks [9]. Existing CAPTCHA implemen-
tations generally belong to one of three categories: (1) text-
based, (2) image-based, or (3) video and audio-based. Some
popular examples of each are shown in Table 1.

Most existing CAPTCHAs are text-based. The user is
presented with visually distorted text and asked to type
it in correctly to prove he or she is a human and not a
computer algorithm masquerading as a person. Many mobile
devices lack a physical keyboard, which makes text-based
input cumbersome and error-prone [10]. Further, most text-
based CAPTCHAs are (English) language-dependent and not
suitable for multilingual worldwide usage. This paper miti-
gates the shortcomings of existing approaches and proposes a
new CAPTCHA, termed as fgCAPTCHA, which leverages
touchscreen technology in mobile devices to make
CAPTCHAs user-friendly and intuitive. fgCAPTCHA
presents users with a composite image containing several
visually distorted human faces along with other objects and
non-real faces embedded in a complex background pattern. To
prove that a user is human, users must solve the CAPTCHA
by correctly selecting only the real human faces without
choosing any other objects or non-real face images. If this
is successfully done, the user is considered to be human
and granted access to the secured resource. Fig. 1 shows an
example of how a fgCAPTCHA test can be correctly solved.
In most cases, solving an instance only requires two or three
taps from the user, making it extremely quick to complete and
mobile device-friendly.

Key contributions of this research include:

1) Design of an interactive non-keyboard-based
(touchscreen-compatible) image CAPTCHA to facil-
itate easy use on mobile devices.

2) Generation of computationally-challenging face detec-
tion CAPTCHA tests to provide enhanced security.

3) Utilization of genetic learning algorithms to optimize
CAPTCHA parameters for better human performance
and drastically lower the attack success rates of com-
puter algorithms.

4) Development of large-scale human and automated test-
ing processes to evaluate performance of the proposed
image-based face detection CAPTCHA.

II. PROPOSED APPROACH
To address the usability shortcomings of existing implemen-
tations, this paper proposes fgCAPTCHA, a new image-
based CAPTCHA that uses face detection as the test.
This approach leverages the fact that humans are adept at
recognizing faces but this task can be challenging for com-
puters when distortions are applied. The proposed approach
is primarily developed for the touch-based input methods
of mobile devices but is also compatible with point-and-
click techniques of traditional desktop and laptop computers.
fgCAPTCHA is suitable for multilingual applications unlike

many existing CAPTCHAs that are language-dependent. The
proposed approach combines three distinct elements:
1) A set of embedded images, some of which are

photographs of real human faces and others which are
cartoons, sketches, or photos of animals representing
face-like images to make correctly detecting human
faces challenging for computers.

2) A complex background pattern designed to confuse the
automatic face detection software, thereby increasing
the false positive detection rate.

3) A set of visual distortion types (e.g., blurring,
contrast adjustment) and the amount of distortion to
apply, referred to as its intensity.

The generation process can be represented as,

C = f (nmin, nmax ,width, height, φ, Iface, Inonface) (1)

where function f creates a new CAPTCHA of dimensions
width-by-height pixels, containing a total of between nmin
and nmax embedded images taken from sets Iface and Inonface.
Distortion settings (distortion types and distortion intensities)
selected from φ are applied to the rendered composite, yield-
ing CAPTCHA C . The goal of the proposed CAPTCHA gen-
eration approach is to find distortion settings whichmaximize
the chance that humans will be able to solve the CAPTCHA
while minimizing the likelihood of successful automated
attacks by computer algorithms. This can be shown as,

argmaxϕ P(Cϕ) = PH (Cϕ)− PA(Cϕ) (2)

where Cϕ is a CAPTCHA with distortion settings ϕ applied,
PH is the likelihood humans can solve the CAPTCHA, PA is
the likelihood automated attacks can solve the CAPTCHA,
and P is the difference between the two likelihoods. Without
including humans in the loop during the CAPTCHA gen-
eration process, it is impossible to know the actual values
of PH and P for a given CAPTCHA. Instead, a simulation
process is used to model human performance. The results
of the simulation are used to calculate a fitness value for a
generated CAPTCHA such that,

F
(
Cϕ
)
= SH

(
Cϕ
)
− SA

(
Cϕ
)

(3)

where SH is the simulated likelihood of human success,
SA is the likelihood of a successful automated attack, and
fitness value F is the difference between the two likelihoods.
Higher values of F indicate a CAPTCHA where it should be
relatively easier for humans to detect the faces while being
more difficult for computer-based automated attacks to suc-
cessfully complete the face detection task. These attacks can
bemodeled by performing automated face detection and com-
paring detected face locations against known face locations.
The proposed approach uses theViola-Jones algorithm [34] to
locate embedded faces. This algorithm works by calculating
the integral image, the sum of all pixel values to the left and
above a given point, as shown by,

ii(a, b) =
∑

a′≤a,b′≤b

i(a′, b′) (4)
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TABLE 1. Summary of selected existing CAPTCHAs.

Here, a, b are points, i(a, b) is the original image, and
ii(a, b) is the corresponding integral image [34]. Using the
integral image, a series of Haar-like rectangular features are

computed across the image. The rectangular features are run
through a cascade of classifiers to determine the probable
locations of embedded faces [34], [35]. The face locations
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FIGURE 2. Steps involved in generation of a fgCAPTCHA image.

indicated by the Viola-Jones face detector are compared
against the actual embedded human face locations, with the
automated attack rate being the percentage of embedded
human faces that are found. Lower values resulting from (5)
are better,

SA
(
Cϕ
)
=
dcorrect − dfalse

n
≤ 1.0 (5)

where n is the number of embedded human faces in
CAPTCHA image C with distortion ϕ applied, dcorrect
is the number of human faces correctly detected by the
algorithm, and dfalse is the number of false human face
detections.

Since there is no feasible direct way of simulating human
performance, the proposed CAPTCHA indirectly models
human success rates using image quality metrics. Structural
Similarity (SSIM), a metric designed to mimic the human
visual system, compares distorted and undistorted versions of
embedded images to look for differences in linear correlation,
luminance, and contrast [36]. Values closer to 1.0 signify
that the tested images are more similar, and hopefully, the
distorted version will be relatively easier for humans to solve.
SSIM is represented as,

SSIM (x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ

2
y + C1

) (
σ 2
x + σ

2
y + C2

) ≤ 1.0

(6)
where, µx and µy are the mean of images x and y; σ 2

x and
σ 2
y are the variance of x and y; and σxy is the covariance of
x, y. C1 = (k1L)2, C2 = (k2L)2 stabilize the denominator
as it approaches zero, with k1, k2 being generic constants and
L being the dynamic range of pixel values [36]. To model
the human performance, SSIM is performed on each embed-
ded image. The human success rate is an average of all
SSIM values,

SH
(
Cϕ
)
=

∑n
j=0 SSIM

(
Cjϕ

)
n

≤ 1.0 (7)

where n is the number of embedded human faces in
CAPTCHA image C and SSIM

(
Cjϕ

)
is the resulting SSIM

value when distortion settings ϕ are applied to embedded
image j.
As shown in Fig. 2, the generation of fgCAPTCHA images

involves several distinct phases: complex background genera-
tion, face and non-face image selection, distortion type selec-
tion, and distortion optimization. Through the use of a genetic
learning algorithm, the resulting CAPTCHA incorporates dis-
tortion types and distortion intensity levels such that humans
can solve the CAPTCHA with ease but computers cannot.

A. BACKGROUND GENERATION
Creation of a new fgCAPTCHA image begins with the gen-
eration of a 400 × 300 pixel background composed of many
overlapping rectangles in various colors and sizes. This size
is chosen as it can be displayed at its full native resolution on
common mobile devices, avoiding potential issues related to
scrolling or downscaling. The individual colored rectangles
have their colors chosen at random from a list of 56 common
hues including skin tones. Height and width are based on a
fraction of the overall image size, randomly scaled, such that,

s =
{ r
10

min(height,width)
∣∣∣0.75 ≤ r ≤ 1.25

}
(8)

where, s is the resulting size in pixels for one side of the
rectangle, height andwidth are the overall height and width of
the background, and r is a random real-valued scaling factor.
Colored rectangles are scattered across the entire background
until at least 95% is covered. This provides a complex pattern
to interfere with the rectangular features used by the Viola-
Jones detector and other similar face detection algorithms.
The random sizes and colors make it difficult to isolate
embedded images, and in some cases, lead algorithms to
falsely detect faces in the background.

B. IMAGE SELECTION
Once the background is generated, a total of 4 to 5 face and
non-face images are selected to be embedded such that,

ntotal =
{
nface + nnonface

∣∣∣ nface ≥ 2, nnonface ≥ 1,

ntotal = {4, 5}
}

(9)
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FIGURE 3. Example of a new undistorted CAPTCHA.

Here nface, nnonface, and ntotal represent the number of
embedded face, non-face, and total images, respectively. At
least two face images are present to prevent a single guess
from successfully solving the CAPTCHA. At least one image
is a non-face image to provide a false target in case attackers
can detect the location of embedded images. Each embedded
image is scaled to approximately 100 × 100 pixels prior
to placement. This size is chosen to correspond with the
area covered by a fingertip for accurate use on touchscreen
devices. The images are placed at randomly selected coor-
dinates within the background, ensuring that the images do
not overlap with each other or the outside boundary of the
CAPTCHA. An example of an undistorted CAPTCHA show-
ing the background and placed images appears in Fig. 3.

TABLE 2. Distortion types.

C. DISTORTION SELECTION
In the proposed approach, the distortions applied to a
CAPTCHA have a significant impact on human and auto-
mated attack success rates. During design, 10 distortion types
have been identified that yield the best performance. Each
distortion type has a range of possible intensities adjusted by
various parameters as shown in Table 2.
In this step, the various distortion types are compared to

find the types which provide the best performance when
applied to the intended CAPTCHA. Each distortion type is
applied at eight different intensities evenly spread over its
range. Performance or fitness values are calculated for each
of the resulting images using (3). The results are ranked by
their fitness, with those distortion types yielding the top 50%
most-fit CAPTCHAs selected for further use. A Cartesian
product is created combining two each of the best-fit distor-
tion types. Previous experience has shown that applying two
distortion types to each CAPTCHA represents a good balance
between making images too simple for automated attacks
(one distortion type) or too hard for human users (three or
more distortion types). Some distortion type pairs known to
perform poorly are discarded, with the rest continued to the
next distortion optimization step.
These distortions are classified into three categories:

geometric, noise-based, and degradation distortions. Geomet-
ric distortions alter the shape, size, or position of embedded
images. Width scaling makes an image narrower, whereas
height scaling makes an image shorter. Piecewise scaling
leaves the overall dimensions of the image untouched but
changes the relative proportions of sections of the image. For
example, the left half of an image might be compressed so
it takes 50% less space than before while the right half is
stretched to fill the available space. The rotation distortion
rotates the image around a center axis. Any portion of the
image falling outside the original dimensions of the image is
removed. Rotation can be performed using the transformation
matrix, [

x ′

y′

]
=

[
cos(ϕ) − sin (ϕ)
sin(ϕ) cos(ϕ)

] [
x
y

]
(10)

Here (x, y) are the original coordinates of a pixel, ϕ is the
degree of rotation to be applied in radians, and (x ′, y′) are the
adjusted coordinates of the pixel.
Noise-based distortions add interference that is not present

in the original image. Salt-and-pepper noise changes the val-
ues of the specified percentage of pixels to the maximum
or minimum possible value, having the effect of adding ran-
domly discolored pixels to the overall CAPTCHA. Speckle
noise modifies the values of individual pixels in a pattern
that is uniformly distributed with a mean of 0 and a variance
specified by the distortion intensity. Periodic noise creates a
repeating pattern of darkened bars across the entire image.
It can be generated by,

vd (x, y) = max
(
0,min

(v(x, y)+(sin( y+1
ϕ

) ∗ 255)

2
, 255

))
(11)
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FIGURE 4. Example of chromosome groups.

where v(x, y) is the original pixel value, a number between
0 and 255, at coordinates (x, y). vd (x, y) is the distorted pixel
value and ϕ is the distortion intensity.
Degradation distortions are designed to reduce detail or

contrast, making it difficult to distinguish embedded images.
The increase-brightness distortion increases the luminance
of each pixel by a specified percentage, effectively reducing
the contrast of a CAPTCHA. Erosion works on the entire
CAPTCHA in successive blocks. It compares the values of
each pixel with those of its neighbors and eliminates unique
values, reducing fine detail.

Resolution reduction is performed as a pair of bilinear
resizing operations, the first reducing the size of the image
and the second expanding it to its original size. As pixel data is
lost, this yields a blocky-looking image. The bilinear resizing
operation can be represented using,

v(x ′, y′) = ax ′ + by′ + cx ′y′ + d (12)

where v(x ′, y′) is the pixel value of coordinates (x ′, y′)
and coefficients a, b, c, d can be solved using four
equations in four unknowns for the four neighbors
of (x ′, y′) [37].

D. DISTORTION OPTIMIZATION
Once the distortion type pairs have been determined,
optimal intensities for each distortion must be found. This
is a complex problem with a huge search space; therefore,
brute force exploration is not feasible. fgCAPTCHA instead
uses a genetic learning algorithm (GA) to efficiently identify
optimal distortion settings. Genetic algorithms are modeled
on the biological process of evolution [38]. GAs work by pro-
ducing successive generations of candidate solutions, referred
to as chromosomes, to find the distortion settings which
generate the optimized CAPTCHA. The algorithm includes

several steps (input parameters are summarized in Table 3) as
described below.
Step 1: Generate Initial Chromosomes - The algorithm

begins by generating an initial set of 150 chromosomes, each
representing one possible combination of distortion settings.
The chromosomes contain two genes, each encoding a sin-
gle distortion type and its associated real-valued intensity.
Distortion types are selected from the list of approved dis-
tortion type pairs and their intensities are randomly set to a
value within the distortion type’s specified range. After the
chromosomes are generated, a fitness value is calculated for
each using (3). Since each distortion type has a distinct range
of intensities, genetic algorithm operations such as crossover
must be performed only between chromosomes with the same
distortion types. Thus, the chromosomes are organized into
groups based on their distortion types as shown in Fig. 4. To
ensure genetic diversity within each group, a minimum of two
chromosomes per group is maintained.
Step 2: Select Candidates for Next Generation - A roulette

wheel-based process is used to select the chromosomes to
create the next generation. The process selects chromosomes
at a rate proportional to their fitness:

pi =
αi∑n
i=0 αi

(13)

where n is the total number of chromosomes, αi is the
fitness of chromosome i, and pi is the probability chromo-
some i will be selected [39]. Roulette wheel selection works
by first summing the fitness values of all chromosomes,
yielding T . Then, for each chromosome, a random value λ,
between 0 and T is selected. The list of chromosomes is
iterated through, adding their fitness values, until the sum is
greater than or equal to λ. The chromosome whose fitness
value brings the sum over λ is selected to create the next
generation [39].
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FIGURE 5. Demonstration of crossover process between parent
chromosomes J1 and J2 to create child chromosomes K1 and K2.

Step 3: Perform Crossover - In the crossover step, the
values from two parent chromosomes are used to produce two
child chromosomes. Approximately 80% of parent chromo-
somes are randomly selected to participate in this process.
A variation on single-point crossover, shown in Fig. 5, is
used to accommodate the real-valued distortion intensities
stored in the genes. As with single-point crossover, prior to
the crossover point, child genes K1,K2 inherit directly from
their parents J1, J2 such that for gene X , K1X = J1X and
K2X = J2X . After the crossover, a weighted combination of
the two parents is used to simulate the value changes that
would occur with a binary string representation in traditional
single-point crossover. Here, K1X =

1
4J1X +

3
4J2X ,K2X =

1
4J2X +

3
4J1X .

Step 4: Conduct Mutation - To prevent stagnation of results
at local optima, mutation is applied to approximately 5%
of gene values. This helps to ensure the entire solution
space is searched rather than just values near those of the
parent chromosomes. The traditional mutation approach of
randomly flipping bits in a binary-encoded gene value does
not work with real-valued genes. Instead, the existing gene
value is averaged with a new random value when mutation is
performed,

m =
{
c+ n
2

∣∣∣∣distmin ≤ n ≤ distmax} (14)

where c is the existing value of the gene, n is a random real-
valued number between the distmin and distmax minimum and
maximum intensity values allowed for the distortion, and m
is the mutated gene value.
Step 5: Run Replacement - Once a new generation of

chromosomes has been created, an λ + µ-update replace-
ment process is used to select which chromosomes will be
retained. This method keeps the chromosomes with the best
fitness values from both the parent and child generations,
preserving good chromosomes from the parent generation
that might otherwise be lost with a traditional generational
replacement.
Step 6: Evaluate Termination Criteria - Once replacement

has occurred, the fitness values for all chromosomes are com-
pared. The best fitness value is recorded for each generation.
The genetic learning algorithm can terminate if enough gen-
erations have been run or if the best fitness value stagnates.

TABLE 3. fgCAPTCHA genetic algorithm details.

Otherwise, operation of the genetic learning algorithm
continues and the chromosomes resulting from the replace-
ment process are provided as input to the selection
step to create a new generation. Actions are determined
by,

Action=


Complete if g ≥ 100
Complete if g≥50 and bestg≤1.01∗bestg−5
Continue otherwise

(15)
Here, g is the number of the current generation and bestg is

the best fitness value for generation g.
Step 7: Completion - The genetic learning process stops

once the termination criteria have been satisfied. To ensure
that any readily-attackable images do not see public use,
all CAPTCHAs with computer-based attack success rates of
SA = 1.0 are discarded. The remaining CAPTCHAs with the
best fitness values are recorded along with their embedded
image coordinates so they can be used as tests. Examples
of generated CAPTCHAs presented to users are shown in
Fig. 6.

TABLE 4. Display sizes of common devices used to evaluate the
performance of the proposed CAPTCHA.

This work is an extension of preliminary research [40],
[41] where the CAPTCHA is generated using simple visual
distortions. The proposed approach improves on the previous
model in multiple ways:
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FIGURE 6. Examples of fgCAPTCHA.

1) Incorporates improved visual distortions which fur-
ther strengthen the security of the CAPTCHA without
sacrificing human ability to solve.

2) Uses color images and a genetic learning algorithm-
based image generation process which increases human
success rates while also reducing the automated
attack rates in solving the face detection image
CAPTCHA.

3) Removes the dependency on humans for parameter
selection and optimization and therefore makes the
CAPTCHAgeneration process highly scalable and able
to meet the target success objectives.

4) Takes into account design requirements of the vari-
ous devices used to view the CAPTCHA. As shown
in Table 4, screen size and resolution can vary sig-
nificantly even among devices of the same type.
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A well-designed CAPTCHA must work effectively
across the entire spectrum of computing devices, from
smartphones where it may be the only item on-screen
to tablets and computers where it is part of a larger
webpage.

III. EXPERIMENTAL METHOD, RESULTS AND ANALYSIS
This section provides the details of image databases used, par-
ticipants, and protocol followed for designing and evaluating
the performance of the proposed CAPTCHA along with the
results and analysis.

A. IMAGE DATABASE
For experimental evaluation, publicly-available photographs
from the LFW face database are used for human face
images [42]. Cartoons and high-quality sketches from
photobucket.com comprise the non-face images used in the
CAPTCHA.

B. PARTICIPANTS AND TESTING PROTOCOL
Evaluation of fgCAPTCHA is conducted with the help of
2,600 volunteers, all above 18 years of age. Prior to collecting
responses, consent of the volunteers is obtained and they are
informed that their responses would be used for research and
analysis purposes. The users accessed the webpage protected
by fgCAPTCHA in an uncontrolled environment using their
preferred method of accessing the Internet. Users were free
to use desktops, notebooks, and smartphones to access and
solve fgCAPTCHA.

The size of each fgCAPTCHA image is 400 × 300 pix-
els. Only one fgCAPTCHA is present on the screen at
one time along with other webpage content. If the user is
unsuccessful in solving a particular fgCAPTCHA, a different
fgCAPTCHA image is provided to solve and access pro-
tected content. In-depth mobile device testing has also been
completed by 17 volunteers using a combination of tablets
and smartphones. These users have compared fgCAPTCHA
with two other popular CAPTCHAs, namely text-based
reCAPTCHA and image-based IMAGINATION. Success
rates are recorded and users also provide a ranking of the
CAPTCHAs by their ease of use. Automated attack testing is
performed using the Viola-Jones face detection algorithm and
two commercial face detection packages. The faces detected
by software are compared to the actual face locations. If any
portion of the detected face overlaps an actual face, the face
is considered to be correctly found. An automated attack is
considered successful if all human faces in a CAPTCHA are
found without any false detections.

C. ANALYSIS
1) EVALUATING HUMAN PERFORMANCE
To collect the data and evaluate the effectiveness of
fgCAPTCHA, over 40,000 attempts by over 2,600 users
have been recorded as a part of a university login page.
The human success of solving fgCAPTCHA is dependent on

TABLE 5. fgCAPTCHA success rates for distortion type pairs.

the complexity and level of distortions applied using genetic
learning. With simple distortions such as rotation and height
scaling, the human success rate is 97%; whereas, resolu-
tion reduction and adding noise affect the performance sig-
nificantly. In our experiments, average human performance
across all variations is 87.9%. Detailed results are summa-
rized in Table 5. From these results, we can infer that, in
general, geometric distortions such as height scaling and
rotation yield higher success rates. These distortions do not
fundamentally alter the appearance of images; they just resize
or reposition facial features, which allow human users to
easily detect the embedded faces. Noise-based distortions
also yield similar performance. Degradation distortions yield
lower accuracies as, in some cases, they tend to destroy
the fine details needed to distinguish images. This effect is
especially pronounced when sketches are used for non-face
images. When degradation distortions are used, humans have
significant difficulty in distinguishing between human face
photographs and non-real face sketches.
Additionally, 17 volunteers participated in evaluating the

proposed CAPTCHA on mobile devices where a combina-
tion of tablets and smartphones are used. In this evaluation,
fgCAPTCHA achieves the best mobile device human success
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FIGURE 7. Comparison of CAPTCHAs when tested by humans on mobile
devices, contrasted with automated attack success rates [23], [30].

rate with 88.2% accuracy. 70% of test volunteers indicate
that fgCAPTCHA is easiest to use, with several individuals
commenting that it can be completed quicker than other
CAPTCHAs. Volunteers specifically appreciate the touch-
friendly nature of the proposed fgCAPTCHA which can
be solved with just a few taps to the screen. Moreover,
the higher human success rate of fgCAPTCHA implies that
there is a smaller chance of requiring multiple attempts
at the CAPTCHA to access protected content compared to
the alternatives. This is another highly desirable trait in
determining ease of use. Fig. 7 illustrates these comparisons
along with automated attack success rates. This comparison
clearly shows that the proposed fgCAPTCHA is language-
independent, easy to solve, and mobile user-friendly.

2) AUTOMATED ATTACK EVALUATION
In the automated attack evaluation, three off-the-shelf
approaches are used to detect faces in fgCAPTCHA with
varying rotation and scale parameters. In our experiments,
none of the automated face detection algorithms are able
to correctly solve any of the tested CAPTCHA images. In
cases where the algorithms are able to detect some human
face images, other faces are either missed or falsely detected.
This is largely expected since the widely-used Viola-Jones
face detector is incorporated into the CAPTCHA generation
process and cases where the Viola-Jones detector locates all
faces are automatically discarded from the test set.

It is unlikely that an automated brute force attack on
fgCAPTCHAwould be successful. Each CAPTCHAcontains
2-4 human face images, each being approximately 100×100
pixels in size. Including the 1

3 chance of guessing the number
of embedded images, the likelihood of one random guess at
solving the CAPTCHA being accurate is approximately,(

1
3

) 3∏
i=0

(100)(100)i
(400)(300)

= 0.157% (16)

Since new CAPTCHA images are presented on each
attempt, attackers are unable to use their previous guesses
to improve the accuracy of future attempts. Attackers must
make a new random guess each time. Thus, the effec-
tive attack success rate is less than 1.6-in-1000, thereby

significantly enhancing security of the online environment
using the proposed fgCAPTCHA.

IV. CONCLUSION
As demonstrated in this paper, the unique touchscreen tech-
nology of mobile devices can be leveraged to create an
additional layer of security that is both effective and user-
friendly. The proposed genetically optimized fgCAPTCHA
works efficiently on both touchscreens used by tablets and
smartphones and on traditional computers, achieving a high
88% human accuracy rate during evaluation. It does so with-
out compromising performance, offering an effective 0%
automated attack rate. This combination of low attack rates,
high human accuracy rates, and convenient mobile device
usage provides major improvements over existing desktop-
centric security CAPTCHAs in widespread use today.

APPENDIX
A working demonstration of fgCAPTCHA is available at
http://fgcaptcha.captcharesearch.com.
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