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Abstract—The growth of online services has resulted in a great
need for tools to secure systems from would-be attackers without
compromising the user experience. CAPTCHAs (Completely
Automated Public Turing Tests to Tell Computers and Humans
Apart) are one tool for this purpose, but their popular text-based
form has been rendered insecure by improvements in character
recognition technology. In this paper, we propose a novel image-
based CAPTCHA which employs object recognition as its test.
Inspired by the negative selection approach in biological immune
systems, an innovative two-phase filtering algorithm is proposed
which ensures that the CAPTCHA is resilient to automated
attack while remaining easy for human users to solve. In
extensive testing involving over 3,000 participants, the proposed
aiCAPTCHA achieved a 92.0% human success rate.

Index Terms—CAPTCHA; mobile security; web security; ob-
ject classification.

I. INTRODUCTION

The Internet has become a critical part of modern human so-

ciety. Many everyday activities, ranging from writing e-mails

to conducting banking, rely on easily accessible and secure

online services. If access to these services is disrupted, such as

through a denial of service (DoS) attack, both consumers and

service providers may incur significant loss of time, money,

and resources. Many online services have adopted CAPTCHAs

(Completely Automated Public Turing Tests to Tell Computers

and Humans Apart) as part of a strategy for preventing misuse

of online resources by automated attackers [1]. CAPTCHAs

are tests designed to determine if the would-be user is human

or a computer algorithm. They are an interactive security layer

intended to be easy for humans to solve but challenging for

computers.

The most common form of CAPTCHA is the text-based

CAPTCHA, which requires users to decipher and input text

from a visually distorted image [2]. One popular example is

Google’s reCAPTCHA [3]. Research has also been conducted

into the design of image CAPTCHAs based on tasks such

as identifying on image boundaries [4], recognizing faces

[5] or biometric features [6], and conducting limited class

object recognition such as distinguishing between dogs and

cats [7]. However, as research on creating new CAPTCHAs

has progressed, so has work on breaking CAPTCHAs [8],

[9], [10] that has demonstrated vulnerabilities and weaknesses

of the existing CAPTCHAs. A new solution that is not

vulnerable to existing attack strategies (OCR, segmentation,

object classification, pattern recognition) is needed to avoid

further attacks.

Fig. 1. Example of an aiCAPTCHA test based on identifying black chairs.

This paper proposes aiCAPTCHA, a novel image-based

CAPTCHA designed to avoid the weaknesses of existing

approaches. It requires users to recognize specific object

instances in a complex composite image. As shown in Fig. 1,

aiCAPTCHA presents users with an image containing multiple

photographs. Users are asked to select specific items, such as

black chairs, by clicking (with computers) or tapping (with

tablets and smartphones) on all instances of the specified

item type. While this sort of object recognition task has been

extensively studied in computer vision [11], [12], [13], existing

solutions remain inferior to the human visual system and

have difficulty in correctly recognizing the required objects

when used with expansive object classes like those used by

aiCAPTCHA. To further ensure that computers will be unable

to solve aiCAPTCHA tests, the proposed approach incor-

porates a negative selection-based artificial immune system
which identifies and removes CAPTCHAs which are suscep-

tible to automated attack. While the resulting CAPTCHAs

are difficult for automated attackers, testing with over 3,000

volunteers achieved a 92.0% human success rate in solving

aiCAPTCHA tests.



Fig. 2. An overview of the proposed aiCAPTCHA generation process.

II. PROPOSED AICAPTCHA

The proposed aiCAPTCHA is based on the premise that

humans can quickly recognize objects of interest in a cluttered

background while automated algorithms struggle with this task

because it requires the ability to segment and recognize objects

by their class and attribute. Users are shown a composite image

containing a stack of photographs of individual items. The

photographed items represent 100 classes and 172 attributes

(e.g., green tractors). The photographs are visually overlaid

and distorted by adding ragged edges, simulated tears, and/or

a dust effect. To solve the CAPTCHA, users must select all

instances of a specified object type (e.g., round tables, red

tomatoes) present in the aiCAPTCHA image. Users may make

up to one mistake, either by failing to select an object that is

present or selecting an object that was not specified, and still

have their attempt counted as correct. Correct attempts are

presumed to come from legitimate users and grant access to

the resource aiCAPTCHA protects.

A. aiCAPTCHA Generation Process

Biological immune systems can distinguish between foreign

cells and the body’s own cells, popularly known as self-nonself

discrimination [14], [15]. As mentioned by Dasgupta and

Forrest [16], “this discrimination is achieved in part by T-cells,
which have receptors on their surface that can detect foreign
proteins (antigens). T-cell receptors are made by a pseudo-
random genetic rearrangement process, making it likely that
some receptors will bind to self. Such self-reactive T-cells are
censored in the thymus, with the result that only those cells
that fail to bind to self proteins are allowed to leave the thymus
and become part of the body’s immune system.” This concept

is the key inspiration of the proposed aiCAPTCHA generation

process. In the proposed approach, the CAPTCHAs that are

susceptible to attacks are discarded and the ones which fail the

attack test are used for distinguishing humans and computers

apart.

The aiCAPTCHA generation process can be represented as

C = F (width, height,O, I,H, d,A) (1)

where, function F represents the series of operations required

to generate a new CAPTCHA of dimensions width-by-height
pixels. The required object type used for the CAPTCHA test is

randomly chosen from O, the set of all tagged object classes

and attributes. True target and false target photographs are

taken from object-tagged set I . H represents precomputed

Histogram of Oriented Gradient (HOG) descriptors for each

photograph in I , an alternate representation of image data

that can be used to identify similar images [17]. d represents

a difficulty level that determines the distortions added to

generated CAPTCHAs. A represents the attack algorithms to

be used in conducting negative selection and deletion of vul-

nerable CAPTCHAs. The resulting attack-resistant generated

aiCAPTCHA is C.

As shown in Fig. 2, a number of steps are involved in

generation of aiCAPTCHA images. They are described in

detail below.
1) Background Generation: Generation of a new

aiCAPTCHA image begins with the creation of a background

of size width × height pixels, where large sizes (at least

750×750) are used so the CAPTCHA has sufficient detail for

use on high resolution displays. The background is designed

to resemble a table top upon which a stack of photographs

will be placed.
2) Target Object Type Selection: Once the background is

generated, one object class-attribute combination (object type)

dselected is randomly chosen from D to use for the CAPTCHA



test. This target object type will determine which photographs

are embedded in the aiCAPTCHA image and will be provided

to users in the instructions to solve the CAPTCHA.

3) True Target Photograph Selection: Using the target

object type dselected that has been chosen, between 3 and 5

images are randomly chosen from the subset of corresponding

photographs Idselected
. These images Ptrue will be embedded

in the resulting aiCAPTCHA image and will serve as true

targets for users to select when solving aiCAPTCHA.

4) False Target Photograph Selection: Next, false tar-

get photographs are chosen to function as distractors for a

would-be attacker. False targets are chosen by first calcu-

lating the Euclidean distance between the HOG descriptor

for each photograph in Ptrue relative to each photograph in

Inotselected = {I − Idselected
}. Photographs with a smaller

Euclidean distance in their HOG descriptors are more visually

similar and are ideal for use in the CAPTCHA. A would-be

attacker may be more likely to confuse one visually similar

photograph for another and thus fail their attempt at solving

aiCAPTCHA.

For each true target photograph in Ptrue, the 3 to 4 pho-

tographs in Inotselected with the smallest Euclidean distance

between their HOG descriptors are added to Pfalse to serve

as false targets in the aiCAPTCHA image.

An additional 10 to 20 randomly selected photographs from

Inotselected are added to Pbackground to provide a confusing

background upon which Ptrue and Pfalse will be layered.

5) Photograph Preparation and Placement: After selecting

Pbackground, Ptrue, and Pfalse, each photograph in these sets

is rotated and scaled as follows:
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Here, sx and sy are the scaling factors in the x and y directions

respectively and θ is the clockwise rotation angle. The scaling

parameters are determined based on the individual size of each

photograph, and θ is varied randomly within a range carefully

chosen to avoid extremely low or extremely high rotations.

(x′, y′) denote the new coordinates for each pixel (x, y) of

each photograph. The scaling allows for consistent sizing of

each photograph (approximately 100×100 pixels) so it can be

easily viewed. The rotation helps achieve the desired output

in the form of a stack of photographs.

After scaling and rotation, the photographs may be subjected

to the tear distortion depending on the specified difficulty

level d. The tear distortion is applied to each photograph

individually by randomly selecting one or more pairs of points

on the image. For each of these pairs, one point is designated

as the starting point (x0, y0) and the other is designated as the

ending point (xf , yf ). A number of lines, each denoted by

T (initialized with the starting point (x0, y0)), are constructed

between each starting and ending point as follows:

T = T
⋃

(
xf − xt

xf
rx(·), yf − yt

yf
ry(·)) (3)

Here, (xt, yt) denotes the latest point added to the line T ,

(xf , yf ) denotes the ending point for this line. rx(·) and ry(·)
both denote random functions that are either 0 or 1 but with

the constraint that for each step rx(·) + ry(·) ≥ 1. Therefore,

at each step, Eq. 3 takes a one pixel step towards the ending

point but it may choose from three possible directions. Each

line T starting from the same pair of starting and ending points

is added to the set of tear lines T and the pixels of the image

for each point in this set ((x, y) ∈ T) are modified as follows:

I ′(x, y) = t+ δ, δ ∈ [−v,+v] (4)

where, I ′(x, y) denotes the new value for the pixel at location

(x, y) for the particular image I . t denotes the base tear color

(either gray or white) and δ is a small change in the range of

[+v,−v]. v denotes the maximum permissible deviation from

the base tear color.

Next, a random walk function is used to create a ragged

edge effect around each photograph. Finally, the colors in the

photographs are manipulated to make object recognition more

challenging.

After all visual effects are added, each photograph in

Pbackground is placed layer by layer at random locations on

the background generated in Step 1. Next, the photographs in

Ptrue and Pfalse are placed in the top-most layer such that the

true target Ptrue photographs are always completely visible to

the user.

6) Global Distortion: Once the entire aiCAPTCHA image

is generated, a dust effect is applied globally for certain

values of difficulty level d. The goal of the dust effect is

to make aiCAPTCHA harder to solve for automated scripts

while adding a type of noise that is commonly seen by human

eyes, i.e., the settling of dust. In order to emulate this effect,

we divide the aiCAPTCHA image into regions and apply a

blending effect to the pixels belonging to a region as follows:

I ′(x, y) = wiI(x, y) + wdD (5)

Here, I ′(x, y) and I(x, y) denote the modified and original

values of the pixel at location (x, y) of the aiCAPTCHA

image respectively. D denotes the dust color that is set at

(242, 168, 0) RGB. wi and wd are the weights for the original

pixel and the dust color D used in the weighted sum-based

blending approach such that wi + wd = 1 and wd varies

between 0.1 to 0.3 depending on the image region.

7) Negative Selection and Deletion of Vulnerable
CAPTCHAs: To ensure the viability of aiCAPTCHA as

a security tool, it is important that all images which are

presented to users are resilient to automated attacks. Much

as biological immune systems use a negative selection

process to identify and eliminate immune cells which do

not properly guard against foreign attackers, aiCAPTCHA

employs an artificial immune system with its own negative

selection process to identify and remove aiCAPTCHA images

which may not successfully protect the guarded resource

from automated attack [18]. Rather than use generated

detectors as in a traditional negative selection algorithm [15],



aiCAPTCHA’s process uses input from three distinct object

recognition algorithms as simulated attacks to determine

which aiCAPTCHA images should be removed:

1) SIFT (Scale-Invariant Feature Transform) keypoint-

based matching [19], [20], which generates feature-

based descriptions of images. The features generated

from the aiCAPTCHA images are compared to already

tagged image templates representing known objects us-

ing a 0.6 cosine similarity threshold. If the threshold is

met, the object identified in the aiCAPTCHA is labeled.

2) Bag of Visual Words image classification [21], which

constructs a sparse vector of histograms representing

image features and then uses a Naive Bayes classifier

to attempt to match those to the feature histograms of

previously trained images.

3) Discriminatively-trained deformable part-based model

(DPM) categorization [22], [23], which builds multiscale

deformable models representing portions of images.

Support vector machines are used to match the mod-

els generated from aiCAPTCHA images to previously

trained known models of objects.

Simulated attacks are conducted against the generated

aiCAPTCHA using each of the three algorithms. If any

algorithm successfully identifies the objects in at least half

of the true target photographs, the aiCAPTCHA image is

considered defective and is deleted from the aiCAPTCHA

database by the negative selection algorithm. This ensures that

the resulting aiCAPTCHA images are resilient to adversarial

external attacks. As shown by Table I, approximately 14% of

generated aiCAPTCHA images were deleted by the negative

selection algorithm while conducting this research. Fig. 3

shows examples of aiCAPTCHA images which have passed

the negative selection attack process and are ready for use.

TABLE I
NUMBER OF AICAPTCHAS SOLVED BY ATTACKERS IN NEGATIVE

SELECTION ARTIFICIAL IMMUNE SYSTEM WHILE GENERATING IMAGES

Generated CAPTCHAs 860

CAPTCHAs Solved by SIFT 33

CAPTCHAs Solved by Bag of Words 0

CAPTCHAs Solved by DPM 91

Defective Attackable CAPTCHAs Deleted from Database 124

Remaining Resilient CAPTCHAs for Public Use 736

III. EXPERIMENTAL RESULTS AND ANALYSIS

Generated aiCAPTCHA images have been tested by over

3,000 human participants. This section provides details of

the source images, research participants, and protocol used

in evaluating aiCAPTCHA along with results and analysis.

A. Image databases

In order to generate aiCAPTCHA images, a database with

attribute-labeled images of various object categories is re-

quired. Since existing object databases are either: (a) not

labeled with attributes, or (b) restricted to specific groups

of objects such as animals, a new database was collected to

support this research. Collection began with the creation of a

list of object classes and associated attributes for each class.

For example, cats may have the attributes “white,” “brown,”

or “black” based on color, whereas books may be “open” or

“closed” depending on their position. Overall, 100 classes with

172 attribute-based subclasses were identified.

The identified classes and attributes were used to generate

search queries to retrieve images for each combination of

object class and attribute. The retrieved images were manually

filtered to remove images which did not accurately represent

the intended object class and attribute. The resulting database

contains a total of 7,765 tagged images.

The aiCAPTCHA database is initially populated with gener-

ated aiCAPTCHA images that can resist external attacks. This

is determined by performing the negative selection filtering

process using multiple attack algorithms. Over time, images

in the aiCAPTCHA database which have a record of good

human performance and user experience (UX) migrate to

the aiCAPTCHA+UX database. The criteria to migrate a

CAPTCHA to the aiCAPTHCA+UX database is that users

must successfully solve each CAPTCHA 90% of the time over

10 attempts. This novel adaptive filtering mechanism ensures

that CAPTCHAs in the aiCAPTCHA+UX database are both

resilient to external attacks and provide an excellent user

experience as quantitatively determined by user performance.

B. Participants and Testing Protocol

The proposed approach was evaluated by 3,135 volunteers

using a set of 736 rendered aiCAPTCHA images. Volunteers

attempted to access portions of a website that were protected

by aiCAPTCHA. Participants were unsupervised and allowed

to use their choice of browser and computing device (desktop

computer, laptop, tablet, or smartphone). One aiCAPTCHA

image was presented at a time. Users were asked to continue

attempting to solve the CAPTCHAs until they were successful,

at which point they gained access to the protected website.

C. Analysis

In total, 19,360 attempts to solve aiCAPTCHA were

recorded with 7,360 attempts from CAPTCHAs in the

aiCAPTCHA database and 12,000 attempts from CAPTCHAs

in the aiCAPTCHA+UX database. As shown in Table II,

humans achieved a 92.0% success rate (correct 23 of 25

times) when attempting CAPTCHAs in the aiCAPTCHA+UX

database.

TABLE II
HUMAN SUCCESS RATES IN SOLVING CAPTCHAS

Database
Number of User Success

CAPTCHAs Attempts Rate

aiCAPTCHA 736 7,360 80.7%

aiCAPTCHA+UX 425 12,000 92.0%



yellow helmet                          yellow taxi                             white rat                               red tomato

Fig. 3. Four examples of aiCAPTCHA images, with the true target photographs needed to solve the CAPTCHA outlined.

TABLE III
EVALUATING HUMAN SUCCESS RATES ON AICAPTCHA DATABASE

IMAGES BY DIFFICULTY LEVEL

Difficulty Level User Attempts Success Rate

Level 1 1,770 82.8%

Level 2 1,770 79.3%

Level 3 1,920 81.3%

Level 4 1,900 79.0%

The tested aiCAPTCHAs come from four distinct difficulty

levels, each with its own set of distortions applied during

the generation process. These levels are determined by the

application where the aiCAPTCHAs are deployed and the

security needed. The difficulty levels are:

• Level 1: No dust or tear distortions

• Level 2: Dust distortions only

• Level 3: Tear distortions only

• Level 4: Both dust and tear distortions

Overall, the impact of the difficulty levels and distortions on

human success rates was small. As shown in Table III, humans

performed about 4% better on aiCAPTCHA database images

with no distortions than those with both the tear and dust

distortions. The effect of distortions on the automated attackers

used in the negative selection algorithm was more pronounced.

Adding the tear distortion to an aiCAPTCHA image cut the

success rate of automated attackers by one-third.

The aiCAPTCHA generation process is designed to be

resilient against attacks by conventional image classifiers

through its artificial immune system. Unconventional and brute

force attacks remain possible although our testing with best-

of-breed approaches finds them unlikely to succeed. Fig. 4

illustrates the results of attempting one such unconventional

attack, image recognition with Very Deep Convolutional Net-

works [24], on two aiCAPTCHA images. As the figure shows,

the algorithm was unsuccessful in correctly identifying the

objects of interest in the CAPTCHAs.

Brute force attempts, where an attacker selects random

locations in the CAPTCHA, are similarly likely to fail. Each

aiCAPTCHA contains 3-5 true target photographs. Since one

target is allowed to be missed in a successful attempt for

the sole purpose of an improved user experience, an attacker

would need to correctly identify between 2 and 4 targets to

solve the CAPTCHA. Each target is approximately 100× 100
pixels in size, with the overall aiCAPTCHA image size being

at least 750 × 750 pixels. Thus, the average chance of a

single brute force attempt at correctly solving aiCAPTCHA

is extremely small:

(
1

3

) 4∑
i=2

⎛
⎝ i∏

j=1

(100)(100)j

(750)(750)

⎞
⎠ = 0.0223% (6)

Since a new image is chosen at random from a large set

each time aiCAPTCHA is presented, a would-be attacker

would likely have to wait hundreds of times before they will

see the same aiCAPTCHA image again if their attempt is

unsuccessful. When combined with the 2-in-10,000 chance

of correctly solving the CAPTCHA on a given attempt, a

would-be attacker would likely spend a significant amount

of time using a brute force approach to successfully attack

aiCAPTCHA.

IV. CONCLUSION

This paper presents the novel combination of an attribute-

based object recognition CAPTCHA with a negative selection-

based artificial immune system and two-phase filtering model

that provides a security mechanism which is effective at

preventing automated attacks without compromising the user

experience. aiCAPTCHA has a high 92.0% human success

rate for attempts on CAPTCHAs in the aiCAPTCHA+UX

database, which is well above the 70%-80% rate of existing

CAPTCHAs such as reCAPTCHA v1 and IMAGINATION

[25], [26], and is designed to facilitate use on both traditional

computers and touchscreen devices. When combined with its

near zero likelihood of successful attacks, it offers significant

advantages over CAPTCHAs commonly employed today.

APPENDIX

A working demonstration of aiCAPTCHA is available at

http://aicaptcha.captcharesearch.com.
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